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Overview

- Background and motivation: computation and physics
- Entanglement and irreversibility in circuits
- Ground-state computing and vertex models

- Tensor networks



Computer Science & Physics

The first thing to know:

“Computer science is no more about computers than
astronomy is about telescopes.” (Edsger Dijkstra)

My take:

Computer science is a branch of mathematics that studies
what is computable and how it can be computed.

But computations require real-world physical phenomena to be implemented!

Computer science and physics are closely connected.



First connection: | Physical laws impose practical limitations on computation.
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Example: Landauer’s principle (1961)

Any logically irreversible manipulation of information, such as the erasure of a bit
must be accompanied by a corresponding entropy increase.

[adapted from C. H. Bennett, Stud. Hist. Philos. Sci. B 34, 501 (2003).]
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energy cost of bit erasure



But it is not only erasure that costs energy:

— A bit has disappeared!
input output
— Irreversibility in logic gates too!

NAND gate

Actually, the connection between computational and irreversibility raised an
interesting question:

s it possible to compute reversibly?

Yes! (C. Bennett, 1973) Toffoli gate (AE > 0)

catch: many more auxiliary bits are needed




There is another connection between physics and computer science:

Second connection: | Physics provides models of computation

-Transistor-based circuit model (current standard)

algorithm iﬁt Oft' Slet 'Of transistor
g arithmetic ogic operations
operations gates

- Quantum-hardware based circuit model (q. computing)
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operations

set of quantum and
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algorithm



There are other physical models of computation...

... Including ground-state models
Mizel, Mitchell, Cohen, Phys. Rev. Lett. (2000)

The result of the computation is encoded
on the ground state of a physical system.

Finding the ground state becomes the computation!

Choose a system whose interactions enforce a
pre-established algorithm.

(1)

Two formulations: or

2) Choose a system whose interactions enforce the
problem to be solved.



Example of (1): Enforcing a pre-established algorithm
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Crosson, Bacon & Brown, Phys. Rev. E (2010).
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Example (2): Enforcing the problem to be solved

k-SAT problem (satisfiability of a conjunctive normal form):
F(x1,29,....,2Nn) = (Z1 Va2) AN(Z2VayVas) A(xgVIgV Te)A(x7VagVareVEz)A(TsVr)

- To each binary variable, associate a “bit” (e.g., a spin 1/2)
- To each clause, assign a many-body interaction term
- Add all interaction terms to create a total-energy cost function

- The ground state (lowest energy configuration) satisfies (or not!) all clauses simultaneously

Fiot = FEo p(x1,22)+ Ea_p(x1,23)
+ E3_p(x2,24,25) + Es_p (T4, 238, T6)

+ E4_b(337, Le, L2, 333)



How can one reach the ground state?



Simulated annealing: slow cooling

Kirkpatrick, Gelatt Jr., Vecchi, Science (1983)

Energy,

»

global minimum: solution

»

state

slow cooling + thermal fluctuations



Quantum annealing: slow reshaping of the Hamiltonian

Apolloni, Carvalho, de Falco,
Stochastic Process Appl. (1989)

Energy

Finnila, Gomez, Sebenik, Stenson, Doll
Chem. Phys. Lett. (1990)

Kadowaki, Nishimori

Phys. Rev. E (1998) easy to prepare

(Ho)

Farhi, Goldstone, Gutmann, Laplan, Lundgren, Preda
Science 292, 472 (2001)

solution (H;)

>
state

Y D-Wave Systems

adiabatic evolution

H(t)y=(1—-t/T)Ho+ (t/7)H;




Numerical Simulation:




What is the main problem with these approaches?

Most ground-state encodings create physical systems that are too complex!

They lead to glassy behavior and phase transitions!

Both features slow down the annealing process...

Our group may have found a way around (more on that soon)



There is yet another connection between physics and computer science:

Third
connection:

Physics concepts can shed light on the complexity of computations.

Consider a black-box computation implemented with reversible gates.
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How hard is it to reverse it?

Why is this an important question? Cryptography!

Our group has found an answer (more on that soon as well)



Our group has been developing applications of physics-inspired methods and
Ideas to computation:

Chamon & Mucciolo, Virtual parallel computing and a search algorithm using matrix product states (Phys Rev Lett, 2012)

Chamon & Mucciolo, Rényi entropies as a measure of the complexity of counting problems (J Stat Mech, 2013)

Chamon, Hamma & Mucciolo, Emergent irreversibility and entanglement spectrum statistics (Phys Rev Lett, 2014)

Shaffer, Chamon, Hamma & Mucciolo, Irreversibility and entanglement spectrum statistics in quantum circuits (J Stat Mech,
2014)

Chamon, Mucciolo, Ruckenstein & Yang, Quantum vertex model for reversible classical computing (Nat Comm, 2017)

Yang, Kourtis, Chamon, Mucciolo & Ruckenstein, lterative compression-decimation scheme for tensor network optimization
(arXiv, 2017)

Boston-Orlando collaboration




Irreversibility & Entanglement Spectrum in Reversible Circuits

- Consider a set of quantum bits (qubits): {|¥3) }i=1,...n

- Start each one in a superposition state:  |¢;) = sin(6;)|0); + cos(6;)|1);

- The initial state of the system is a product state (no entanglement):

Winitial = |¥1) @ |2) -+ @ |1hy)

- Apply the black-box circuit (a given sequence of reversible gates):  U.ivcuit = Uy - U1 -+ - Uy

- The system will evolve into an entangled state: | Fg, .\) = Z Az, ..., 20)|z1) @ - - - |20

Is it possible to reverse the system back to a disentangled state, without referring to the circuit?



The answer: It depends on the type of circuit!

For circuits containing a universal set of gates: NO
What we found:

For circuits containing a non universal set of gates: YES

For classical reversible circuits, the Toffoli gate is

For quantum circuits, Hadamard, CNOT, and T gates
universal:

form a universal set:
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How did we check reversibility and irreversibility?

Trial and error: We followed the entanglement entropy as we tried a random sequence of gates
(Metropolis algorithm)
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But what if we don’t know anything about the circuit? How could we tell?

The entanglement spectrum reveals the difficulty in reversing the evolution!

>
OOOOO;OOOOO

subsystem A (N4 qubits) subsystem B (Nz qubits)

Entanglement spectrum statistics:

ratio of consecutive spacings:
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Results: The quantum state of the system reveals the nature of the circuit!

But you need to look deep inside to find it.
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The statistics of the entanglement spectrum fluctuations

reveal the nature of the circuit and the difficult to reverse it.

Wigner-Dyson irreversible universal gates

Poisson reversible non universal gates



Mapping Reversible Classical Circuits into Vertex Models
(A novel way to do ground-state computing)
» Create a two-dimensional lattice representation of a circuit; the gates are the vertices.
« One direction of the lattice represents “time”.

bltS“ “input” “output”

> “time”

» The left and right boundaries contain the input and output states of the bits; can be fixed or free.

* Not limited to forward computations; can solve mixed-boundary problems.



How do we create the lattice?

bit-bit
coupling
Toffoli
K a gate a K
SWAP

_ b b e gate
blts - —

C c @ ab d e
I - W I —

locally satisfied locally satisfied

circuit building blocks: reversible gates



From gate to tile
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From gate to tile
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AddVO

From circuits to tiled walls

All logic gates can be written using
. 1 only 1- and 2-body interactions

“grout”



From tile to vertex
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Mapping reversible classical circuits to a vertex model

Other necessary gates: ID-ID, ID-SWAP, SWAP-ID, SWAP-SWAP
\\ a c / \\ a a /

/
a \b
N /C/ \C\\

SWAP-SWAP ID-ID



Mapping reversible classical circuits to a vertex model

Combining all gates (vertices) and couplings: a regular square lattice
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Thermodynamics of the vertex model

NG OUNE BN BN B
XXX X
CGOXOXE X P
XX XX
GOXEOXE X D
XX XX
XX X P

NN N N

PLTP,T P,TP,TPsTP,TP.TPT Py

P; : j-th slice of reversible gates (permutation)

T’; : j-th slice of bit constraints (projector)

The exact partition function is computable!

Result: Paramagnet!

7 = (2cosh BK)*W

No finite-temperature phase transition!



Quantum vertex model: adding a transverse field

23 = 8 states at each vertex: ¢s = 0,1,...,7 bits — qubits
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The mapping onto the vertex model removes the finite-temperature
glass transition

Proposed phase diagram:

thermal axis L
K

No finite-T transition

thermal annealing

A .
de 0= quantum axis



A solution can be reached... but how fast?
Dynamics is what matters!
The question to ask is:

How long does it take to thermalize™



[(7)

Numerical investigation of thermal annealing dynamics

mixed boundary conditions
| 21 x 126

10
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1) quasi-polynomial relax. times:

0(1) = by exp{|In(7/719)]"}

— quasi-polynomial
- — sub-exponential

(#) (In L)**

V= 0.475 — Tsol "~ €

2) sub-exponential relax. times:
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(0.60 < 1)

We cannot tell yet which one is the correct behavior!



Quantum annealing of the vertex model

=1~

No finite-T transition

thermal annealing 1

Is there a quantum phase transition?

quantum
annealing



Quantum annealing of the vertex model

- When no Toffoli gates are presented: equivalent to 1D Ising chains + transverse field

Only a 2nd order quantum phase transition

annealing in polynomial time!
- When a finite density of Toffoli gates are presented: the same scenario is likely.
(conjecture)

- Ongoing Quantum Monte Carlo studies to check it.

- Plans to verify it experimentally using a quantum annealer: D-Wave machine



Embedding into the D-Wave Chimera Architecture

The quantum vertex model
can be implemented in the
D-Wave machine

¢b de
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Tensor Network Approach to Vertex Models
gates — tensors (vertices)
® k l k
; { N\

® > tensors enforce
} / gate truth tables

AN

k= Fi(i, ) 1, if k= F(i,j) and | = F5(3, j),
; Lkt = 0, otherwise.




tensors — network

boundary indices: fixed or free,
depending on the problem to be
solved




Instead of looking for ground states, we take a different approach:

Z ="Tr H T[n]i7 7.kl full contraction of the tensor network
n

Example:

— . ] fixed values

1 -
Z(Ck, ﬁ) = Tr n ‘ ‘Zk B — Z T[l]i,j,n T[Q]j,L,l T[S]c\v,n,m T[4]k,l,m
3 4— | 1,7,k,l,m,n

Z(a, B) = number of solutions to the problem encoded by the circuit for fixed o, (5.



By varying boundary variables, one at a time, and monitoring Z, we can determine
solutions to the problem.

The catch: it is exponentially hard to compute Z!I'  #P complexity class

COmputational cost ~ O (X# of network lmks)

!

bond dimension

We have developed a scheme that attenuates the difficult:

lterative Compression Decimation (ICD)



Compression of every bond
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Some recent numerical results for the random Toffoli circuit;
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We were able to
reach L = 96.

A brute-force
enumeration would
require 84 ~ 1043

iterations!!



SUMMARY:

- Close connections between Computer Science & Physics

- Physics constraints computations, but also inspires new methods and concepts

- Entanglement spectrum fluctuations reveal the difficult to reverse circuits

- Vertex models: a novel way to do ground-state computing (classical or quantum)

- ICD: A new scheme to solve vertex-model problems using tensor networks
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