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Overview

- Background and motivation: computation and physics

- Ground-state computing and vertex models

- Tensor networks

- Entanglement and irreversibility in circuits



Computer Science & Physics
The first thing to know:

But computations require real-world physical phenomena to be implemented!

“Computer science is no more about computers than 
astronomy is about telescopes.” (Edsger Dijkstra)

My take:

Computer science is a branch of mathematics that studies 
what is computable and how it can be computed.

Computer science and physics are closely connected. 



Example: Landauer’s principle (1961)  

Any logically irreversible manipulation of information, such as the erasure of a bit 
must be accompanied by a corresponding entropy increase.

[adapted from C. H. Bennett, Stud. Hist. Philos. Sci. B 34, 501 (2003).]

�S � kB ln 2 �E � kBT ln 2

energy cost of bit erasure

Computation  Information 
Processing  

Physical 
World  

Physical laws impose practical limitations on computation.  First connection:



But it is not only erasure that costs energy: 

Actually, the connection between computational and irreversibility raised an 
interesting question:

Is it possible to compute reversibly?

NAND gate

A bit has disappeared!  

Irreversibility in logic gates too!
input output

Yes!  (C. Bennett, 1973) Toffoli gate (�E � 0)

catch: many more auxiliary bits are needed



There is another connection between physics and computer science:  

ºTransistor-based circuit model (current standard) 

set of 
arithmetic 
operations 

set of 
logic 
gates 

algorithm transistor 
operations

º Quantum-hardware based circuit model (q. computing) 

set of quantum and 
classical abstract 

operations 

algorithm 
quantum and 

classical hardware 
operations

Physics provides models of computation  Second connection:



There are other physical models of computation…   

Finding the ground state becomes the computation! 

Two formulations:

Choose a system whose interactions enforce a 
pre-established algorithm.

Choose a system whose interactions enforce the 
problem to be solved.

or

(1)

(2)

The result of the computation is encoded 
on the ground state of a physical system.

… including ground-state models   
Mizel, Mitchell, Cohen, Phys. Rev. Lett. (2000) 



Example of (1):  Enforcing a pre-established algorithm

Exi
!si"=#0 if si = xi where si corresponds to input vi

! if si ! xi where si corresponds to input vi.
$

!4"

We call an energy function made up of a circuit energy func-
tion plus an input forcing energy function a computed circuit
energy function.

The above description of how to take a combinatorial cir-
cuit, C, plus its input, !x1 , . . . ,xn", and converting it into a
many-spin energy function is what we term the classical
ground-state spin computing !CGSSC" model. Just as in
quantum dot cellular automata %9,10&, the computation oc-
curs when the system is in its ground state and is spatially
spread out across the device. Unlike in quantum dot cellular
automata, however, this model can implement logic gates by
using interactions beyond just pairwise interacting spins !or
pseudospins in the case of the quantum dot configurations."
For example, constructing a quantum wire in the CGSSC
model will correspond directly to an identical model in the
semiclassical limit of quantum dot cellular automata models.
Gates in quantum dot cellular automata, however, are imple-
mented in a way which is not directly analogous to the
CGSSC model. In Sec. V we return to this issue and define a
more general set of energy functions wherein our results still
hold and compare this with quantum cellular automata mod-
els.

B. Example

To be explicit, let us consider an example circuit involv-
ing four inputs, a few logical gates, and one output as dia-
gramed in Fig. 1. The energy function for the AND gate is
then, for example,

EAND!s1,s2,s3,s4,s5" = !„!1 − s1"!1 − s2"s5 + !1 − s1"s2s5

+ s1!1 − s2"s5 + s1s2!1 − s5"…
= !!s5 + s1s2 − 2s1s2s5" . !5"

The full circuit energy function is given by

EC!s1,s2,s3,s4,s5" = !!s3 + s4 + s6 − s3s4 − 2s3s6 − 2s4s6 + 2s3s4s6"

OR

AND

+ !!s5 + s1s2 − 2s1s2s5" + !!1

NAND

− s7 − s5s6 + 2s5s6s7" .
!6"

Suppose that we wish to force the input to be s1=s2=s3=0
and s4=1. Then we would add the term

EC,x = EC + !!s1 + s2 + s3 + !1 − s4"" . !7"

II. UNPROTECTED GROUND-STATE SPIN COMPUTING
FAILS AT FINITE TEMPERATURE

Above we have defined an energy function whose ground
state deterministically carries out a circuit. Having defined
this energy model we can now consider the physically im-
portant question of what happens to this model when the
physical system described by this energy function is in ther-
mal equilibrium at a finite temperature. Thus we are led to
consider the Boltzmann distribution corresponding to a non-
zero temperature version of a circuit energy function. It then

makes sense to consider whether the conditional probability
of output f!i1 , i2 , . . . , in"= !t1 , t2 , . . . , tm" given the forced in-
put !i1 , i2 , . . . , in" for this circuit is large enough to distin-
guish this output from a completely random outcome. It is
easy to see that for at least some circuits C and inputs x,
ground state computation will fail to correctly evaluate the
function corresponding to the circuit as the size of the circuit
being implemented grows. This follows directly from exam-
ining one of the most basic models in statistical physics, the
one-dimensional Ising model %28&. This was pointed out in
the context of quantum-dot cellular automata in %10& !see
also %11,29&". Here we reproduce this argument presenting it
in two different forms. We do this not just to be pedagogical,
but also because these two methods will generalize from the
one dimensional case to more general circuit computing en-
ergy functions.

Consider the circuit computing energy function corre-
sponding to inputting the bit 0 into a series of n identity
gates:

FIG. 1. Left: An example circuit whose circuit energy function
is given in the text. The bits of the ground state spin energy function
are labeled si. Right: the spin system corresponding to this circuit.
Here, the spins connected by a triangles have interactions between
them as specified in the main text.
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Crosson, Bacon & Brown, Phys. Rev. E (2010). 
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s1, s2, s3, s4 : fixed

s5, s6, s7 : free
When EC = 0 s5, s6, s7 : computed ✔



Example (2):  Enforcing the problem to be solved
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k-SAT problem (satisfiability of a conjunctive normal form):

F (x1, x2, . . . , xN ) = (x̄1 _ x2) ^ (x̄2 _ x4 _ x5) ^ (x4 _ x̄8 _ x̄6) ^ (x7 _ x6 _ x2 _ x̄3) ^ (x̄3 _ x1)

- To each binary variable, associate a “bit” (e.g., a spin 1/2)

- To each clause, assign a many-body interaction term

- Add all interaction terms to create a total-energy cost function

- The ground state (lowest energy configuration) satisfies (or not!) all clauses simultaneously



How can one reach the ground state?



Simulated annealing: slow cooling

Kirkpatrick, Gelatt Jr., Vecchi, Science (1983)

Energy

state

global minimum: solution

slow cooling + thermal fluctuations



Quantum annealing: slow reshaping of the Hamiltonian

Apolloni, Carvalho, de Falco, 
Stochastic Process Appl. (1989) 

Finnila, Gomez, Sebenik, Stenson, Doll 
Chem. Phys. Lett. (1990)

Kadowaki, Nishimori 
Phys. Rev. E (1998)

Farhi, Goldstone, Gutmann, Laplan, Lundgren, Preda 
Science 292, 472 (2001)

Energy

state
adiabatic evolution

solution (H1)

easy to prepare
(H0)

tunneling

H(t) = (1� t/⌧)H0 + (t/⌧)H1

D-Wave Systems



Numerical Simulation:



What is the main problem with these approaches?

They lead to glassy behavior and phase transitions!

Both features slow down the annealing process…

Most ground-state encodings create physical systems that are too complex!

Our group may have found a way around (more on that soon)



There is yet another connection between physics and computer science:

Why is this an important question?  Cryptography!

4
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P

Consider a black-box computation implemented with reversible gates. 

How hard is it to reverse it?

Physics concepts can shed light on the complexity of computations.  
Third 
connection:

Our group has found an answer (more on that soon as well)



Our group has been developing applications of physics-inspired methods and 
ideas to computation:   

Boston-Orlando collaboration 

Chamon & Mucciolo, Virtual parallel computing and a search algorithm using matrix product states (Phys Rev Lett, 2012)

Chamon & Mucciolo, Rényi entropies as a measure of the complexity of counting problems (J Stat Mech, 2013)

Chamon, Hamma & Mucciolo, Emergent irreversibility and entanglement spectrum statistics (Phys Rev Lett, 2014)

Shaffer, Chamon, Hamma & Mucciolo, Irreversibility and entanglement spectrum statistics in quantum circuits (J Stat Mech, 
2014)

Chamon, Mucciolo, Ruckenstein & Yang, Quantum vertex model for reversible classical computing (Nat Comm, 2017)

Yang, Kourtis, Chamon, Mucciolo & Ruckenstein, Iterative compression-decimation scheme for tensor network optimization 
(arXiv, 2017)



Irreversibility & Entanglement Spectrum in Reversible Circuits  

 - Start each one in a superposition state: | ii = sin(✓i)|0ii + cos(✓i)|1ii

 - Consider a set of quantum bits (qubits): {| ii}i=1,...,n

 - Apply the black-box circuit (a given sequence of reversible gates): Ucircuit = Um · Um�1 · · ·U1

 - The initial state of the system is a product state (no entanglement): | iinitial = | 1i ⌦ | 2i · · ·⌦ | ni

 Is it possible to reverse the system back to a disentangled state, without referring to the circuit? 

 - The system will evolve into an entangled state: | finali =
X

x1,...,xn

A(x1, . . . , xn

)|x1i ⌦ · · · |x
n

i



 The answer: It depends on the type of circuit!

For classical reversible circuits, the Toffoli gate is 
universal:

For quantum circuits, Hadamard, CNOT, and T gates 
form a universal set:

TH

 For circuits containing a universal set of gates: NO

 For circuits containing a non universal set of gates: YES
 What we found:

! 1p
2
(|0i � |1i)|1i ! H

H|0i ! ! 1p
2
(|0i+ |1i) T|0i ! ! |0i

T|1i ! ! ei⇡/4 |1i
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 How did we check reversibility and irreversibility?

Trial and error: We followed the entanglement entropy as we tried a random sequence of gates 
                          (Metropolis algorithm)

reversible 
(100 cases checked) 

irreversible 
(100 cases checked) 



 But what if we don’t know anything about the circuit? How could we tell?

 The entanglement spectrum reveals the difficulty in reversing the evolution!

subsystem A (NA qubits) subsystem B (NB qubits)
eigenvalues

⇢A = trB [⇢] reduced density matrix

{�1,�2, · · · ,�2NA}

�n � 0
2NAX

n=1

�n = 1

sn =
�n � �n+1

�n�1 � �n
P (s) =

1

2NA

*
2NAX

n=1

�(s� sn)

+

�1 � �2 � �3 � · · · ) 0  sn < 1

ratio of consecutive spacings: distribution of ratios:

 Entanglement spectrum statistics:
S1 = �

2NAX

n=1

�i ln�i
entanglement 
entropy
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 Results: The quantum state of the system reveals the nature of the circuit!

But you need to look deep inside to find it.



 The statistics of the entanglement spectrum fluctuations 

reveal the nature of the circuit and the difficult to reverse it.

Wigner-Dyson irreversible universal gates

Poisson reversible non universal gates



Mapping Reversible Classical Circuits into Vertex Models  
(A novel way to do ground-state computing)

• One direction of the lattice represents “time”.

“time”

bits

• The left and right boundaries contain the input and output states of the bits; can be fixed or free.

“input” “output”

• Create a two-dimensional lattice representation of a circuit; the gates are the vertices.

• Not limited to forward computations; can solve mixed-boundary problems.
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From circuits to tiled walls4

II. UNIVERSAL REVERSIBLE CLASSICAL
COMPUTATION: THE MAPPING TO THE TILE

MODEL

In this Section we formulate reversible classical com-
putations by laying logic circuits in a two-dimensional
structure of tiles covering the plane. Our starting point
is the fact that any Boolean function can be implemented
in terms of TOFFOLI gates, which are reversible logic
gates with three inputs and three outputs. Starting from
a circuit of TOFFOLI gates, our construction proceeds
by first using SWAP gates to repeatedly swap distant bits
in the input that are acted upon by particular gates of
the circuit, until the operation of every gate is reduced
to adjacent bits. The second step is to associate tiles
with each of the gates, as shown in Fig. 2, where one
should imagine placing input and output bits at the in-
tersections of the tile surfaces with the horizontal lines,
as will be described in detail shortly.

The tiles representing the gates can then be laid side-
by-side in a plane to implement the computational cir-
cuit, as shown in Fig. 3 for the example of the “ripple-
carry adder”, which computes the carry bit that will be
“rippled” to the next bit when adding two numbers [32].
(Notice that we have included an additional control line
s

n

which is set to 1, so as to implement the CNOT gate
using the TOFFOLI gate.) As can be seen from this ex-
ample, one may also need to include the Identity (ID)
gate in addition to the TOFFOLI and SWAP gates in
order to represent particular logic circuits by a plane-
filling tiling. Implied in the figure is that adjacent tiles
share bits along common boundaries. The “ripple-carry
adder” is the building block for more complicated cir-
cuits such as addition and multiplication and thus, the
module of tiles shown in Fig. 3 is incorporated into the
corresponding tile representation of addition and multi-
plication circuits.

We can now proceed with the explicit implementation
of the general picture outlined above by constructing the
Hamiltonian which encodes the solution of a computa-
tional problem in its ground state. The subsections bel-
low will set up the general framework and formulate ap-
proaches that form the basis of both the results of this
paper and of work we are planning for the future.

A. Implementing Single Gate Operations by
Spin-Hamiltonians with One- and Two-Body

Interactions

We start by representing Boolean variables x
i

in terms
of spins �

i

= ±1 (x
i

= (1+�
i

)/2) placed on the boundary
of each tile, as depicted in Fig 4. Operations of logic gates
are then implemented by designing a Hamiltonian acting
on the spins associated with individual tiles such that (a)
the interactions are short ranged and involve at most two
bodies; and (b) spin (i.e., bit) states that satisfy the gate
constraint are ground states of the tile Hamiltonian and

C
ARRY =

c
n

s
n

a
n

b
n

c
n+1

c
n

s
n

a
n

b
n

c
n+1

Figure 3. Upper panel: the ripple-carry adder which com-
putes the carry bit that will be “rippled” to the next bit. We
add one additional control line sn and set it to 1 to imple-
ment the original CNOT gate with a TOFFOLI gate. Lower
panel: the ripple-carry adder implemented on the tile lattice,
with di↵erent gates depicted in di↵erent colors: blue tile: ID;
green tile: SWAP; gold tile: TOFFOLI.

all other ”unsatisfying” spin-states are pushed to high
energies.
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Figure 4. Construction of the Hamiltonians that encode the
gate-satisfying states in the ground state manifolds. Spins are
placed on the boundary of the tiles. For the TOFFOLI gate,
an ancilla spin is placed in the center of the rectangular tile.
Couplings needed in the Hamiltonians for the three di↵erent
gates (tiles) are indicated by purple lines connecting two spins.
The dashed line denotes the boundary of the tile.

Identity (ID) Gate: The ID gate takes two bits (a, b)
into (a, b). This is easily enforced by adding ferromag-
netic interactions (J > 0) that align input bits a and b

All logic gates can be written using 
only 1- and 2-body interactions
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gates (tiles) are indicated by purple lines connecting two spins.
The dashed line denotes the boundary of the tile.

Identity (ID) Gate: The ID gate takes two bits (a, b)
into (a, b). This is easily enforced by adding ferromag-
netic interactions (J > 0) that align input bits a and b

5

to output bits c and d, respectively, leading to an energy

EID(�
a

, �
b

; �
c

, �
d

) = �J(�
a

�
c

+ �
b

�
d

). (1)

SWAP Gate: The SWAP gate takes (a, b) into (b, a),
and can be implemented in the same manner as the ID
gate through a ferromagnetic interaction (J > 0),

ESWAP(�
a

, �
b

; �
c

, �
d

) = �J(�
a

�
d

+ �
b

�
c

). (2)

TOFFOLI Gate: The TOFFOLI gate is represented by
a rectangular tile with the three input bits (a, b, c) and
three output bits (a0, b0, d) placed on the boundary, as
shown in Fig. 4. Notice that in this case we also place

an additional ancilla bit in the center of the rectangular
tile, which is essential in order to satisfy the gate con-
straint with no more than two-body interactions. The
TOFFOLI gate takes the three-bit input state (a, b, c)
into (a, b, ab � c). The copying of the first two input bits
from the input into the output is accomplished as before
through a ferromagnetic coupling: �J(�

a

�
a

0 + �
b

�
b

0).
Enforcing the third output bit d = ab�c requires a more
involved interaction. We present the result below, and
leave the detailed justification for the Appendix. The
complete energy cost associated to the TOFFOLI gate
reads

ETOFFOLI(�a

, �
b

, �
c

; �
a

0 , �
b

0 , �
d

; �
S

) = �J(�
a

�
a

0 + �
b

�
b

0) + J(�
a

� 3�
b

� 2�
c

+ 2�
d

+ 4�
S

)

+ J(�3�
a

�
b

� 2�
a

�
c

+ 4�
b

�
c

+ 2�
a

�
d

� 4�
b

�
d

� 4�
c

�
d

+ 4�
a

�
S

� 8�
b

�
S

� 6�
c

�
S

+ 6�
d

�
S

). (3)

B. The global constraint and coupling of adjacent
tiles

In addition to satisfying each gate separately, spins
shared by neighboring tiles must be matched across the
entire system in order for the tile model to accurately
represent the desired computational circuit. To be pre-
cise one can imagine splitting each boundary spin into
two “twin” spins and identifying input/output spins with
each tile. Within this picture, adjacent spins at the
boundary between tiles must be locked together, a con-
straint we implement by introducing a ferromagnetic
“grout” coupling K > 0 between spins on adjacent tiles,
as illustrated in Fig. 5. The corresponding term in the
energy is then written as

Egrout({�}) = �K
X

hi,ji

�
i

�
j

, (4)

where hi, ji labels pairs of “twin” spins i and j on the
boundary between two adjacent tiles and the sum ranges
over all such pairs of the system.

C. Boundary Conditions

Completing the description of the two-dimensional
model of universal classical computation requires a dis-
cussion of boundary conditions, which determine the type
of computational problem one is addressing. For exam-
ple, if the N -bit input is fully specified and one is in-
terested in the output, all that is needed is to transfer
the state from left to right by applying sequentially the
gates one column of tiles at a time. In this case, if the
depth (i.e., the number of steps) of the computation is

K

Figure 5. The ferromagnetic coupling between spins in adja-
cent tiles (the “grout” coupling).

a polynomial in N , the calculation can be done straight-
forwardly in polynomial time via the column-by-column
transfer.

As mentioned earlier, by using reversible gates one can
also represent computational problems with mixed input-
output boundary conditions for which only a fraction of
the bits on the left (input) edge and a fraction of the
bits on the right (output) edge are fixed. A concrete
example is the integer factorization problem implemented
in terms of a reversible integer multiplication circuit. A
reversible circuit for multiplying two N -bit numbers p
and q can be constructed using no more than 5N + 1
bits in each column. One needs two N -bit registers for
the two numbers p and q to be multiplied, one N -bit
carry register c for the ripple-sums, a 2N -bit register s
for storing the answer p⇥q = s, and one ancilla bit b. For
multiplication, one only fixes the boundary conditions on
the input: p and q are the two numbers to be multiplied,
and c, s and b are all 0’s. For factorization we must

“grout”
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From tile to vertex



Mapping reversible classical circuits to a vertex model

Other necessary gates:   ID-ID, ID-SWAP, SWAP-ID, SWAP-SWAP 

a

b

b

c

c

a

a

b

b
cc

a

ID-IDSWAP-SWAP



Mapping reversible classical circuits to a vertex model
Combining all gates (vertices) and couplings: a regular square lattice



Thermodynamics of the vertex model

T T T T T T TTP1 P2 P3 P4 P5 P6 P7 P8 P9

Pj : j-th slice of reversible gates (permutation)

Tj : j-th slice of bit constraints (projector)

The exact partition function is computable!

Result: Paramagnet!

Z = (2 cosh�K)

3LW

No finite-temperature phase transition!



Quantum vertex model: adding a transverse field
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Figure 7. The computational circuit in terms of a rectangular
tile model. The square tiles used previously for the ID and
SWAP gates are combined into four types of rectangular tiles.
Each tile is now coupled to four neighbors, which involves
coupling two pairs of spins on each long side, and one pair of
spins on each short side.

four rectangular tiles plus the TOFFOLI tile, in an ar-
rangement similar to that of Fig. 7. (The ripple-carry
adder example in Sec. II was not laid down in such way,
but it can be easily rearranged into this form.)

Each tile, in the projected space of satisfying states,
can be in one of m = 8 states. We will place these 8-
state variables at the vertices of a tilted square lattice,
as shown in Fig. 8. The 8-state variable resides on the
vertices of the lattice, and is indicated by the large dot.
The links will contain the spin variables. There are six
Boolean (or spin) variables associated to each vertex: two
on each of the two double bonds and one in each of the
two single bonds tied to each vertex. Three of the spins
are inputs, and we use the state q of the vertex, where
q = 0, 1, . . . , 7, to read-o↵ the inputs in binary (which are
uniquely related to the spin): xIN

a

= bit[a, q], a = 1, 2, 3
for the three bits of the number q. The output bits are
the bits of the 3-bit number G(q), where G is the gate
function: xOUT

a

= bit[a, G(q)], a = 1, 2, 3. The energy
cost for two adjacent gates that are incompatible with
each other is determined by the ferromagnetic coupling
K.

One can express the Hamiltonian as

Ĥ =
X

hss

0i

X

qs,qs0

Kgsgs0
qs,qs0 |q

s

q
s

0ihq
s

q
s

0 |

+
X

s2boundary

X

qs

h
qs |q

s

ihq
s

|

+
X

s

X

qs,q

0
s

�
qs,q

0
s

|q
s

ihq0
s

| , (8)

where K
gsgs0
qs,qs0 encodes the energy cost for mismatched

nearest-neighbor vertices (the energies, with scale set by
K, depend on the state of the vertices q

s

and q
s

0 , as well
as on the types of gates g

s

and g
s

0 sitting at neighbor-
ing vertices s, s0); h

qs encodes the boundary conditions,
which we associate directly with the vertex rather than

Figure 8. Mapping the rectangular tile model onto a vertex
model. Each tile is represented by a vertex on a square lattice.
The vertex variable can be in one of the m = 8 satisfying
states of its corresponding gate. Each vertex is coupled to
its four neighbors, with the double bond indicating two pairs
of spins and single bond indicating one pair of spins being
coupled together. (The long and short edges of a rectangular
tile are perpendicular to the double and single bonds of a
vertex, respectively.)

with the input or output bits of a gate (since the re-
lationship is one-to-one); and finally, the transition ma-
trix elements �

qs,q

0
s

between the states within a vertex s.
All these couplings can be determined given a computa-
tional circuit and the boundary conditions. The quantum
term �

qs,q

0
s

can be designed from the internal couplings
within the tiles; for simplicity, one should consider the
case �

qs,q

0
s

= �, 8q
s

, q
s

0 , which is the 8-state counter-
part of a transverse field.

The vertex model defined by Eq. (8) is the starting
point for all the subsequent discussions of this paper.
For example, a quantum annealing protocol for solving
a factoring problem would start with K ⌧ �, where
the ground state is a superposition of all locally satisfied
gates independent of one another, and end with K � �,
with a the ground state in which each tile satisfies the
gate constraint and also passes and receives the right
information to and from its neighbors.

IV. THE VERTEX MODEL:
THERMODYNAMICS, DYNAMICS, AND

COMPUTATIONAL COMPLEXITY

We are now in position to consider both the thermo-
dynamics and the dynamics associated with the Hamil-
tonian in Eq. (8). The phase diagram of the model, as
function of both temperature and the quantum param-
eter � = �/K, as well as the rate at which the system
relaxes to the ground state give important information

qs = 0, 1, . . . , 723 = 8 states at each vertex:

J, h � K � �
quantum tunneling term

bits qubits 



The mapping onto the vertex model removes the finite-temperature 
glass transition

T

K
UNSAT

U
N
S
A
T

local SAT

T ⇠ J

� ⇠ Jglobal SAT

� =
�

K
�c

No finite-T transition

Proposed phase diagram:

thermal axis

quantum axis

thermal annealing



A solution can be reached… but how fast? 

Dynamics is what matters! 

The question to ask is: 

How long does it take to thermalize? 



10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

τ

1

10

l(
τ)

quasi-polynomial
sub-exponential

20% TOFFOLI

mixed boundary conditions

21 × 126

`(⌧) = `0 exp{[ln(⌧/⌧0)]�}

1) quasi-polynomial relax. times:

2) sub-exponential relax. times:

`(⌧) = `0 [ln(⌧/⌧0)]
⌘

� ⇡ 0.475 ⌧
sol

⇠ e(#) (lnL)

2.1

We cannot tell yet which one is the correct behavior!

⌘ ⇡ 1.69 ⌧
sol

⇠ e(#)L0.6✓
lnL

(0.6✓ < 1)

Numerical investigation of thermal annealing dynamics



Quantum annealing of the vertex model
T

K
UNSAT

U
N
S
A
T

local SAT

T ⇠ J

� ⇠ Jglobal SAT

� =
�

K
�c

No finite-T transition

thermal annealing

quantum 
annealingIs there a quantum phase transition?



Quantum annealing of the vertex model

- When no Toffoli gates are presented: equivalent to 1D Ising chains + transverse field

Only a 2nd order quantum phase transition

annealing in polynomial time!

- When a finite density of Toffoli gates are presented: the same scenario is likely. 
(conjecture)

- Ongoing Quantum Monte Carlo studies to check it.

- Plans to verify it experimentally using a quantum annealer: D-Wave machine



Embedding into the D-Wave Chimera Architecture
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Figure 14. Procedure for embedding a 4 ⇥ 4 tile lattice into the Chimera graph. (a) Left: a generic tile lattice rotated by
45�. Spins are put on the boundary of each tile. The lattice can be further divided into two sublattices, depicted by dark
and light grey respectively; right: embedding of the tile lattice into the Chimera graph. The “grout couplings” are indicated
by red links. (b) Embedding of each gate into the unit cells of the Chimera graph. (i) Left: a K4,4 unit cell of the Chimera
graph; middle: in order to couple qubits in the same column, we slave the qubits to their neighbors in the other column using
additional ferromagnetic couplings indicated by red links; right: e↵ectively we are left with four qubits that are fully connected.
For simplicity, we hereafter denote the e↵ective couplings between spins in the same column by a single green link. However,
one should keep in mind that they are obtained by slaving the spins to the opposite column via large ferromagnetic couplings.
(ii) The four qubits in the rotated square tile are labeled by their locations on the tile: N (North), S (South), W (West) and E
(East). Tiles corresponding to di↵erent sublattices must be embedded di↵erently due to the special connectivity of the Chimera
graph. (iii) Embedding of the TOFFOLI gate consisting of two square tiles into two unit cells. (a, b, c, d) corresponds to the
input and output bits of the gate, and S is the ancilla bit. In the unit cell, ferromagnetic couplings that copy spins are indicated
by purple links, and couplings required in Hamiltonian (3) are indicate by black links.

phase transition, independent of the circuit or bound- ary conditions. Thus the process and the complexity

The quantum vertex model 
can be implemented in the 
D-Wave machine



Tensor Network Approach to Vertex Models  

gates     →     tensors  (vertices)

tensors enforce 
gate truth tables

Ti,j,k,l =

⇢
1, if k = F1(i, j) and l = F2(i, j),
0, otherwise.

k = F1(i, j)

l = F2(i, j)

l

i

j

k

l

i

j

k



tensors     →     network

boundary indices: fixed or free, 
depending on the problem to be 
solved



Instead of looking for ground states, we take a different approach:

Z = Tr
Y

n

T [n]i,j,k,l full contraction of the tensor network

Example:
fixed values

n

j

α

βi
k

l
m

4

21

3

=
X

i,j,k,l,m,n

T [1]i,j,n T [2]j,�,l T [3]↵,n,m T [4]k,l,mZ(↵,�) = Tr

number of solutions to the problem encoded by the circuit for fixed Z(↵,�) = ↵,�.



By varying boundary variables, one at a time, and monitoring Z, we can determine 
solutions to the problem.

We have developed a scheme that attenuates the difficult: 

Iterative Compression Decimation (ICD)

⇠ O
�
�# of network links

�
computational cost

 bond dimension 

The catch: it is exponentially hard to compute Z !! #P complexity class
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Some recent numerical results for the random Toffoli circuit: 
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We were able to 
reach L = 96. 

A brute-force 
enumeration would 
require 848 ~ 1043 
iterations!!



SUMMARY:

- Close connections between Computer Science & Physics

- Physics constraints computations, but also inspires new methods and concepts

- Entanglement spectrum fluctuations reveal the difficult to reverse circuits

- Vertex models: a novel way to do ground-state computing (classical or quantum)

- ICD: A new scheme to solve vertex-model problems using tensor networks
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